Structural, Optical and Room Temperature Magnetic Study of Mn-Doped ZnO Nanoparticles

Author:

Sharrouf Majed1,Awad Ramadan1,Marhaba Salem1,El-Said Bakeer Douaa2

Affiliation:

1. Physics Department, Faculty of Science, Beirut Arab University Beirut, Lebanon

2. Physics Department, Faculty of Science, Damanhour University Damanhour, Egypt

Abstract

Undoped and Mn-doped ZnO nanoparticles (Zn[Formula: see text]MnxO), with nominal weight percentages [Formula: see text], have been synthesized by co-precipitation technique. The synthesized nanoparticles are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR). From XRD analysis, the compound ZnMnO3 is formed for [Formula: see text] with cubic structure ([Formula: see text][Formula: see text]Å) and its concentration increases with x. Moreover, XRD analysis reveals the wurtzite hexagonal crystal structure for ZnO. The lattice parameters (a and c) of Zn[Formula: see text]MnxO are calculated and they increase with the doping concentration of Mn as a consequence of the larger ionic size of Mn[Formula: see text] ions compared to Zn[Formula: see text] ions. The crystallite size is calculated for all the samples using Debye–Scherrer’s method (SSM), Williamson–Hall methods (UDM, USDM and UDEDM) and Size-Strain Plot method (SSP), and the results are in good agreement with TEM. The presence of functional groups and the chemical bonding is confirmed by FTIR spectra that shows a peak shift between undoped and doped ZnO. The energy bandgap [Formula: see text] is calculated for different concentrations of Mn [Formula: see text] by using the UV-visible optical spectroscopy, between 300[Formula: see text]nm and 800[Formula: see text]nm, showing a noticeable drop in [Formula: see text] with x. At room temperature, the magnetization of the samples reveals the intrinsic ferromagnetic (FM) behavior of undoped ZnO, ferromagnetic behavior of ZnxMn[Formula: see text]O [Formula: see text] and the co-existence of ferromagnetic and paramagnetic behavior for ZnxMn[Formula: see text]O [Formula: see text]. This ferromagnetism is decreased for the doped samples as a consequence of antiferromagnetic coupling between Mn ions. The two samples correspond to [Formula: see text] and [Formula: see text], tend to be superparamagnetic because of the formation of single domain particles as a consequence of small particle size. [Formula: see text] shows an optimum value of Mn concentration for maximum saturation magnetization and the best ferromagnetic nature.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3