Synthesis of Fe2O3/Mn2O3 Nanocomposites and Impregnated Porous Silicates for Dye Removal: Insights into Treatment Mechanisms

Author:

Baek Soyoung,Ghaffari YasamanORCID,Bae Jiyeol

Abstract

Fe2O3/Mn2O3 nanocomposites and impregnated porous silicates (Fe2O3/Mn2O3@SiO2 [FMS]) were prepared and investigated as catalytic adsorbents. The catalysts were applied for cationic and anionic dye pollutants in the adsorption, Fenton reaction, and photocatalysis processes at a pH of 7. Fe2O3/Mn2O3 nanoparticles (FM-NPs) were prepared using the co-precipitation method and were impregnated in SiO2 by the sol–gel process. The synthesized materials were characterized using various sophisticated techniques. Results indicated that the impregnation of bi-metallic NPs in SiO2 increased the surface area, and the function of the adsorbent also improved. FMS showed a significant adsorption effect, with 79.2% rhodamine B removal within 15 min. Fenton and photocatalyst reaction showed removal rates of 85.3% and 97.9%, respectively, indicating that negatively charged porous silicate attracts cationic pollutants. In the case of the anionic pollutant, Congo red, the adsorption reaction of FMS did not occur, and the removal rate of the photocatalyst reaction was 79%, indicating the repulsive force between the negatively charged silica and the anionic dye. Simultaneously, bi-metal-bonded FM-NPs facilitated the photocatalytic reaction, reducing the recombination of electron-hole pairs. This study provides new insights into the synthesis of FM-NPs and FMS as photocatalytic adsorbents and their photocatalytic mechanisms based on reaction conditions and contaminant characteristics. The developed materials have potential applications for environmental mitigation.

Funder

Korea Ministry of Environment

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3