Study of the Non-Linearity on TiO2(0 0 1) Surface with Oxygen Defects: A First-Principles Study

Author:

Dai Yuehua1,Zhang Xu1ORCID,Ma Chengzhi1,Pan Zhiyong1,Wang Feifei1,Lu Wenjuan1,Yang Jin1,Yang Fei1

Affiliation:

1. School of Electronics and Information Engineering, Anhui University, Hefei 230601, P. R. China

Abstract

First-principles plane-wave pseudopotential calculations were performed to study the energetics and electronic structures of oxygen defects on rutile TiO2(0 0 1). The influence of the material thickness on non-linearity (NL) was studied. With the increase in the thickness, the NL became stronger. Calculating the site-projected density of states by applying an external electric field showed that the NL of the bulk is due to the exchange of electrons between O 2p orbitals and Ti 3d orbitals. Finally, the influence of oxygen defects — oxygen vacancies (Vo), oxygen interstitials (Oi), and oxygen vacancies/oxygen interstitial (Vo[Formula: see text]Oi) pairs (Frenkel pair defects) — on the NL of TiO2 was studied. These results demonstrate that the band gap ([Formula: see text] of TiO2 became gradually narrower as the electric field increased. The Stark effect and defects can lead to the splitting of degenerate energy levels. Stronger electric fields increase the band splitting and reduce [Formula: see text]. With the increase in the Vo concentration, the decrease in the splitting amplitude and width of the energy level lead to weakening of the transfer of electrons between O and Ti atoms and optimizing the NL of TiO2. Therefore, the incorporation of Vo plays a significant role in improving the NL of TiO2.

Funder

The Natural Science Foundation of the Higher Education Institutions of Anhui Province

The Research Foundation of Education Bureau of Anhui Province, China

The National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3