Affiliation:
1. MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
Abstract
Cellulose nanofibril (CNF) and graphene (GR) powder were added into polylactic acid (PLA)/polypyrrole (PPy) composite films via a low-cost, eco-friendly, low-temperature, and in-situ polymerization synthesis, which obtain novel flexible and conductive polylacticacid-cellulose nanofibril-graphene/polypyrrole (PLA–CNF–GR/PPy) composite films. The CNF was embedded in the PLA matrix to enhance the mechanical properties. Remarkably, when a few GR (1%) powder was added, the tensile strength of composite films increased by 5.6%, respectively, compared with pure PLA–CNF, and increased by 17.6% compared with the PLA. The GR and CNF had a positive influence on mechanical properties of composite films. In addition, the PLA–CNF–GR/PPy composite films exhibited many unique properties when GR powder was introduced, including high thermal stability, and especially electrical conductivity. The electrical conductivity of the PLA–CNF–GR/PPy composite films increased from 0.12 to 1.06[Formula: see text]S/cm as the content of GR powder increased from 0 to 10%. The PLA–CNF–GR-10/PPy also demonstrated excellent flexible stability, only 7.5% deviation after over 100 bending cycles. Furthermore, we designed and found that the exploration of a flexible solid-state supercapacitor assembled with PLA–CNF–GR-10/PPy composite electrodes had a capacitance of 30[Formula: see text]F/g at a current density of 0.5[Formula: see text]A/g. Although it was not quite as prominent as the capacitance, it provided an innovative means for preparing the conductive composite films. Based on these advantages the PLA–CNF–GR/PPy could be considered as sensors, flexible electrodes, and flexible displays. It also opens a new field of potential applications of biodegradable materials.
Funder
Key Projects in the National Science & Technology Pillar Program during the thirteenth Five-year Plan Period
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献