Fabrication and Study of 3D Printed ABS-Carbon Composite Anodes for Single Chamber Microbial Fuel Cells

Author:

Pandis Pavlos K.1,Georgala Marina1,Nanou Paraskevi1,Stathopoulos Vassilis N.1ORCID

Affiliation:

1. National and Kapodistrian University of Athens

Abstract

Microbial Fuel Cells (MFCs) are electrochemical devices that exploit microbes for wastewater treatment with simultaneous power production. Concerning reactor design, electrode materials and operation modes, great achievements have been reported with an emphasis on developing anode materials to improve overall MFC performance. Anode materials (carbon cloth, carbon veil, carbon sponges) and their properties such as biocompatibility, electrical conductivity, surface area and efficient transport of waste play a very important role in power generation in MFCs. Despite their low cost, they present structural-based disadvantages eg. Fragility, and low conductivity issues. Additive manufacturing of Fused Deposition Modelling (FDM) due to its tailoring properties, has employed various polymer-based materials such as Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for manufacturing applications. In addition, carbon-based composites and hybrid materials eg. electrically conductive PLA and ABS have already been fabricated and are commercially available to exploit good electrical conductivity and structural rigidness. In this research, FDM was used to fabricate custom-sized electrodes made of a laboratory-produced electrically conductive ABS filament. A parametric study of conductivity and biocompatibility properties of these electrodes in correlation to 3D printer parameters was investigated and reported. Furthermore, treatment with a combination of thermal, mechanical, and chemical procedures was performed to improve the crucial parameters of anodes for MFCs.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3