Affiliation:
1. Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
Abstract
In this paper (from 2010 to 2020), the effects of polymeric, metallic and nonmetallic nanoparticles on red blood cells’ hemocompatibility were investigated for the first time. Here, we have considered the latest findings which can help to improve the hemocompatibility of RBCs. It is important to maintain the quality of red blood cells for improving the hemocompatibility because blood products directly affect the health of patients after blood transfusion. Although RBCs can be stored for up to 42 days at 2–6∘C, hypothermic storage lesions (HSLs) are very common in these products. This problem affects the quality of RBC products. Thus, it is necessary to modify the surface molecules of RBCs during storage time to reduce HSLs and alloimmunization complications. Therefore, we reviewed the reported effects of polymeric, metallic and carbon-based nanoparticles on RBCs between 2010 and 2020. The results of our study have shown that the use of negatively charged dendrimers, unsaturated/uncharged liposomes, and PEGylated forms of NPs and RBCs are the best approaches to improve the hemocompatibility conditions of red blood cells. However, large cationic dendrimers, liposomes composed of saturated lipid with long acyl chain, and cationic chitosan nanoparticles have less RBC compatibility. In addition, polymeric nanoparticles have more capacity for surface modification, which makes it possible to make more hemocompatible derivatives. Among metallic nanoparticles, gold and iron nanoparticles were more RBC compatible. However, the smaller size, higher concentration and longer exposure time of these nanoparticles can induce hemolysis and morphological changes in RBCs. On the other side, nonmetallic nanoparticles mostly had poor RBC compatibility, but their effects on RBCs strongly depended on their concentration and physicochemical properties and could be controllable. As a result, the use of polyethylene glycol (PEG), gold, polymeric, and iron nanoparticles in the design of protocols to maintain the survival, structure and activity of red blood cells for improving hemocompatibility can be more effective.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献