Linear Software Models: Bipartite Isomorphism between Laplacian Eigenvectors and Modularity Matrix Eigenvectors

Author:

Exman Iaakov1,Sakhnini Rawi1

Affiliation:

1. Department of Software Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel

Abstract

We have recently shown that one can obtain the numbers and sizes of modules of a software system from the eigenvectors of its modularity matrix symmetrized and weighted by an affinity matrix. However such a weighting still demands a suitable definition of an affinity. This paper offers an alternative way to obtain the same results by means of the eigenvectors of a Laplacian matrix, directly obtained from the modularity matrix without the need of weighting. These two formalizations stand in a mutual isomorphism. We call it bipartite isomorphism since it is most straightforwardly shown by deriving the Laplacian from the modularity matrix and vice versa through the intermediate bipartite graph between two separate sets: the structors’ and the functionals’ sets. This isomorphism is also demonstrated through the equation defining the Laplacian in terms of the modularity matrix, or by the direct mapping of the respective matrices’ eigenvectors. Both matrices and the bipartite graph reflect one central idea: modules are connected components with high cohesion. The Laplacian matrix technique, of which the Fiedler vector is of central importance, is illustrated by case studies. An important claim of this paper is that, independently of the modularity matrix- and Laplacian matrix-specific properties, behind these two alternative matrices there is just one unified algebraic theory of software composition — the Linear Software Models — here concerning the application of the matrices’ eigenvectors to software modularity.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3