Linear Software Models: An Occam’s Razor Set of Algebraic Connectors Integrates Modules into a Whole Software System

Author:

Exman Iaakov1,Wallach Harel1

Affiliation:

1. Software Engineering Department, The Jerusalem College of Engineering-Azrieli, Jerusalem, Israel

Abstract

Well-designed software systems, with providers only modules, have been rigorously obtained by algebraic procedures from the software Laplacian Matrices or their respective Modularity Matrices. However, a complete view of the whole software system should display, besides provider relationships, also consumer relationships. Consumers may have two different roles in a system: either internal or external to modules. Composite modules, including both providers and internal consumers, are obtained from the joint providers and consumers Laplacian matrix, by the same spectral method which obtained providers only modules. The composite modules are integrated into a whole Software System by algebraic connectors. These algebraic connectors are a minimal Occam’s razor set of consumers external to composite modules, revealed through iterative splitting of the Laplacian matrix by Fiedler eigenvectors. The composite modules, of the respective standard Modularity Matrix for the whole software system, also obey linear independence of their constituent vectors, and display block-diagonality. The spectral method leading to composite modules and their algebraic connectors is illustrated by case studies. The essential novelty of this work resides in the minimal Occam’s razor set of algebraic connectors — another facet of Brooks’ Propriety principle leading to Conceptual Integrity of the whole Software System — within Linear Software Models, the unified algebraic theory of software modularity.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Reference32 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Software Models: Density Matrix for Universal Software Design;Quantum Software Engineering;2022

2. Quantum Software Models: The Density Matrix for Classical and Quantum Software Systems Design;2021 IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE);2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3