A Parallel Framework of Combining Satisfiability Modulo Theory with Indicator-Based Evolutionary Algorithm for Configuring Large and Real Software Product Lines

Author:

Shi Kai12,Yu Huiqun1,Guo Jianmei3,Fan Guisheng1,Chen Liqiong4,Yang Xingguang1

Affiliation:

1. Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China

2. Shanghai Key Laboratory of Computer Software, Evaluating and Testing, Shanghai, P. R. China

3. Alibaba Group, Hangzhou, P. R. China

4. Department of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, P. R. China

Abstract

Multi-objective evolutionary algorithm (MOEA) has been widely applied to software product lines (SPLs) for addressing the configuration optimization problems. For example, the state-of-the-art SMTIBEA algorithm extends the constraint expressiveness and supports richer constraints to better address these problems. However, it just works better than the competitor for four out of five SPLs in five objectives and the convergence speed is not significantly increased for largest Linux SPL from 5 to 30[Formula: see text]min. To further improve the optimization efficiency, we propose a parallel framework SMTPORT, which combines four corresponding SMTIBEA variants and performs these variants by utilizing parallelization techniques within the limited time budget. For case studies in LVAT repository, we conduct a series of experiments on seven real-world and highly-constrained SPLs. Empirical results demonstrate that our approach significantly outperforms the state-of-the-art for all the seven SPLs in terms of a quality Hypervolume metric and a diversity Pareto Front Size indicator.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elimination of constraints for parallel analysis of feature models;Proceedings of the 27th ACM International Systems and Software Product Line Conference - Volume A;2023-08-28

2. Performance Evaluation Metrics for Multi-Objective Evolutionary Algorithms in Search-Based Software Engineering: Systematic Literature Review;Applied Sciences;2021-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3