Performance Evaluation Metrics for Multi-Objective Evolutionary Algorithms in Search-Based Software Engineering: Systematic Literature Review

Author:

Nuh Jamal AbdullahiORCID,Koh Tieng WeiORCID,Baharom Salmi,Osman Mohd Hafeez,Kew Si NaORCID

Abstract

Many recent studies have shown that various multi-objective evolutionary algorithms have been widely applied in the field of search-based software engineering (SBSE) for optimal solutions. Most of them either focused on solving newly re-formulated problems or on proposing new approaches, while a number of studies performed reviews and comparative studies on the performance of proposed algorithms. To evaluate such performance, it is necessary to consider a number of performance metrics that play important roles during the evaluation and comparison of investigated algorithms based on their best-simulated results. While there are hundreds of performance metrics in the literature that can quantify in performing such tasks, there is a lack of systematic review conducted to provide evidence of using these performance metrics, particularly in the software engineering problem domain. In this paper, we aimed to review and quantify the type of performance metrics, number of objectives, and applied areas in software engineering that reported in primary studies—this will eventually lead to inspiring the SBSE community to further explore such approaches in depth. To perform this task, a formal systematic review protocol was applied for planning, searching, and extracting the desired elements from the studies. After considering all the relevant inclusion and exclusion criteria for the searching process, 105 relevant articles were identified from the targeted online databases as scientific evidence to answer the eight research questions. The preliminary results show that remarkable studies were reported without considering performance metrics for the purpose of algorithm evaluation. Based on the 27 performance metrics that were identified, hypervolume, inverted generational distance, generational distance, and hypercube-based diversity metrics appear to be widely adopted in most of the studies in software requirements engineering, software design, software project management, software testing, and software verification. Additionally, there are increasing interest in the community in re-formulating many objective problems with more than three objectives, yet, currently are dominated in re-formulating two to three objectives.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3