AN EFFECTIVE FUZZY CLUSTERING ALGORITHM FOR WEB DOCUMENT CLASSIFICATION: A CASE STUDY IN CULTURAL CONTENT MINING

Author:

TSEKOURAS GEORGE E.1,GAVALAS DAMIANOS1

Affiliation:

1. Department of Cultural Technology & Communication, University of the Aegean, Mytilene, Lesvos Island, Greece

Abstract

This article presents a novel crawling and clustering method for extracting and processing cultural data from the web in a fully automated fashion. Our architecture relies upon a focused web crawler to download web documents relevant to culture. The focused crawler is a web crawler that searches and processes only those web pages that are relevant to a particular topic. After downloading the pages, we extract from each document a number of words for each thematic cultural area, filtering the documents with non-cultural content; we then create multidimensional document vectors comprising the most frequent cultural term occurrences. We calculate the dissimilarity between the cultural-related document vectors and for each cultural theme, we use cluster analysis to partition the documents into a number of clusters. Our approach is validated via a proof-of-concept application which analyzes hundreds of web pages spanning different cultural thematic areas.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Obtaining Fuzzy Membership Function of Clusters With the Memristor Hardware Implementation and On-Chip Learning;IEEE Transactions on Emerging Topics in Computational Intelligence;2022-08

2. Semantic Similarity Measure of Fuzzy XML DTDs With Extreme Learning Machine;J INF SCI ENG;2017

3. Web Pages Classification with Parliamentary Optimization Algorithm;International Journal of Software Engineering and Knowledge Engineering;2017-04

4. Fuzzy Clustering Algorithms — Review of the Applications;2016 IEEE International Conference on Smart Cloud (SmartCloud);2016-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3