Affiliation:
1. Department of Computer Engineering, Munzur University, Tunceli, Turkey
2. Department of Computer Engineering, Firat University, Elazig, Turkey
Abstract
In recent years, data on the Internet has grown exponentially, attaining enormous dimensions. This situation makes it difficult to obtain useful information from such data. Web mining is the process of using data mining techniques such as association rules, classification, clustering, and statistics to discover and extract information from Web documents. Optimization algorithms play an important role in such techniques. In this work, the parliamentary optimization algorithm (POA), which is one of the latest social-based metaheuristic algorithms, has been adopted for Web page classification. Two different data sets (Course and Student) were selected for experimental evaluation, and HTML tags were used as features. The data sets were tested using different classification algorithms implemented in WEKA, and the results were compared with those of the POA. The POA was found to yield promising results compared to the other algorithms. This study is the first to propose the POA for effective Web page classification.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献