A Hybrid Multiple Models Transfer Approach for Cross-Project Software Defect Prediction

Author:

Zhang Shenggang1,Jiang Shujuan1,Yan Yue1

Affiliation:

1. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, P. R. China

Abstract

For a new project, it is impossible to get a reliable prediction model because of the lack of sufficient training data. To solve the problem, researchers proposed cross-project defect prediction (CPDP). For CPDP, most researchers focus on how to reduce the distribution difference between training data and test data, and ignore the impact of class imbalance on prediction performance. This paper proposes a hybrid multiple models transfer approach (HMMTA) for cross-project software defect prediction. First, several instances that are most similar to each target project instance are selected from all source projects to form the training data. Second, the same number of instances as that of the defected class are randomly selected from all the non-defect class in each iteration. Next, instances selected from the non-defect classes and all defected class instances are combined to form the training data. Third, the transfer learning method called ETrAdaBoost is used to iteratively construct multiple prediction models. Finally, the prediction models obtained from multiple iterations are integrated by the ensemble learning method to obtain the final prediction model. We evaluate our approach on 53 projects from AEEEM, PROMISE, SOFTLAB and ReLink four defect repositories, and compare it with 10 baseline CPDP approaches. The experimental results show that the prediction performance of our approach significantly outperforms the state-of-the-art CPDP methods. Besides, we also find that our approach has the comparable prediction performance as within-project defect prediction (WPDP) approaches. These experimental results demonstrate the effectiveness of HMMTA approach for CPDP.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Cross-Project Defect Prediction Approach Based on Code Semantics and Cross-Version Structural Information;International Journal of Software Engineering and Knowledge Engineering;2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3