A Cross-Project Defect Prediction Approach Based on Code Semantics and Cross-Version Structural Information

Author:

Zou Yifan1ORCID,Wang Huiqiang1ORCID,Lv Hongwu1ORCID,Zhao Shuai1ORCID,Tian Haoye2ORCID

Affiliation:

1. College of Computer Science and Technology, Harbin Engineering University, Harbin 150000, P. R. China

2. University of Melbourne Grattan Street, Parkville, VIC 3052, Australia

Abstract

Context: Cross-project defect prediction (CPDP), due to the potential of adaption by industry in realistic scenarios, had gained significant attention from the research community. Currently, existing CPDP studies use static statistical features designed by experts, which might not capture the semantic and structural aspects of software, resulting in low accuracy in defect prediction. Meanwhile, they tend to overlook the valuable iterative information brought about by version updates in mature software projects. Objective: This paper introduces DETECTOR, a novel CPDP approach based on coDE semanTic and cross-vErsion struCTural infORmation to leverage cross-versions features of the software and improve the performance of CPDP. Methods: DETECTOR parses source code to exploit Abstract Syntax Trees (ASTs) and cross-version software network (Cross-SN) that consists of internal class dependency network and cross-version class dependency edges. It utilizes Attention-based Bi-LSTM and simplified graph convolutional neural networks to automatically extract software features from ASTs and Cross-SN. The extracted features are fused using gate(⋅) to generate more effective cross-version features. Finally the source project is selected to carry out the data used to train the classifier to predict the defects. Results: Empirical studies on seven open-source Java projects, the experiment results show that: (1) DETECTOR outperforms the state-of-the-art models in CPDP; (2) our proposed cross-version dependent edges positively contribute to DETECTOR performance; (3) gate(⋅) outperforms existing strategies in fusion features; (4) more multi-versions information enhance DETECTOR’s performance. Conclusion: DETECTOR can predict more defects in CPDP and improve the accuracy and effectiveness of prediction.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3