Affiliation:
1. Information Science and Engineering, Shibaura Institute of Technology, 3-7-5 Koto, Toyosu, Tokyo 135-8548, Japan
2. Escuela de Ciencias Empresariales, Universidad Católica del Norte, Chile
Abstract
Asynchronous programming has been widely adopted in domains such as Web development. This programming style usually uses callback methods, non-blocking operations, allowing high responsive user interactions even if an application works without multi-threading. However, this style requires the uncoupling of a module into two sub-modules at least, which are not intuitively connected by a callback method. The separation of modules spurs the birth of other issues: callback spaghetti and callback hell. This paper proposes a virtual block approach to address the previous two issues. This approach enables a programmer to virtually block a program execution and restart it at arbitrary points in the program. As a result, programmers do not need to uncouple a module even if non-blocking operations are adopted; therefore, callback dependencies disappear. Using aspect-oriented programming, this approach uses aspects to control the execution of a program in an oblivious manner. As a consequence, programmers do not need to be concerned whether pieces of code use blocking or non-blocking operations. We implement a proof-of-concept for this approach, called SyncAS, for ActionScript3. In addition, we apply our proposal to a toy application and conduct experiments to show its modular application, flexibility, and performance.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software