Numerical Study of Integrated Solar Photovoltaic–Thermal Module with a Refrigeration System for Air-Conditioning and Hot Water Production under the Tropical Climate Conditions of Singapore

Author:

Dubey Swapnil1,Subiantoro Alison2ORCID

Affiliation:

1. Energy Research Institute at Nanyang Technological University (ERI@N), 50 Nanyang Drive, Singapore 637553, Singapore

2. Department of Mechanical Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010, New Zealand

Abstract

Thermal systems of buildings in the tropics are highly energy intensive. In this study, a novel integrated solar photovoltaic–thermal–refrigeration (PVTR) system used to produce hot water and air-conditioning in the tropical climate conditions of Singapore was analyzed. A dynamic simulation model was formulated for the analysis. Mathematical models were developed for the PV sandwich attached with a solar flat plate collector and for the main components of the refrigeration system. Thorough investigation of the electrical and thermal performances of the system were conducted through the analysis of coefficient of performance (COP), cooling capacity, water temperature and heat capacity in water heater, photovoltaic (PV) module temperature and PV efficiency. The results show that attractive electrical and thermal performance can be achieved with a maximum annual cooling COP of 9.8 and a heating COP of 11.3. The PV efficiency and power saving were 14% and 53%, respectively. The annual cooling, heating and PV energy produced were 9.7, 15.6 and 1.6[Formula: see text]MWh, respectively. The financial payback period of the system was 3.2 years and greenhouse gas (GHG) emission reduction annually was 12.6 tons of CO2 equivalents (tCO2e).

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3