Greenhouse Gas Reduction Effect of Solar Energy Systems Applicable to High-rise Apartment Housing Structures in South Korea

Author:

Park Chang-Hyun,Ko Yu-Jin,Kim Jong-Hyun,Hong Hiki

Abstract

In South Korea, we are aiming for net zero energy use apartment home structures. Since the apartment structure in South Korea is generally a high-rise of 10 or more floors, the types of renewable energy applicable are limited to photovoltaic (PV) panels, solar collectors installed on the wall, or a photovoltaic thermal (PVT) hybrid panel combining both. In this study, the effect of PV, ST (Solar Thermal), and PVT systems on greenhouse gas reduction was analyzed using TRNSYS18. All three systems showed maximum CO2 reductions at 35° facing south. PV, ST, and PVT showed CO2 reductions of 67.4, 114.6, and 144.7 kg_CO2/m2·year, respectively. Compared to those values, when installed on a wall (slope of 90°), CO2 reduction is about 35–40% less and about 20% less at a slope of 75°. ST and PVT installed on the vertical wall have a greater greenhouse gas reduction effect than the PV installed at the optimal slope of 35°. Since the CO2 reduction difference among SW, SE, and azimuthal S is within 10%, ST and PVT are recommended for installation on high-rise apartment structure walls or balconies with the azimuthal angle of ± 45° with respect to south.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference32 articles.

1. To Respond to the New Climate System ⌈2030 New Industry of Energy Expansion Strategy⌋,2015

2. A Study on Electric Capacity and CO2 by the Roof Top PV System of the Industrial Building in Korea;Kim;J. Korean Sol. Energy Soc.,2010

3. Renewable Energy Trend Data,2014

4. Energy, Exergy and Economic Analysis of a Solar Hybrid Power System Integrated Double-Effect Vapor Absorption System-Based Cold Storage

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3