Drop-In Tests of R-404A Alternative Refrigerants R-455A and R-454C in a Small Ice Maker

Author:

Lee Byungmoo1,Kim Nae-Hyun2

Affiliation:

1. ICETRO Corp., 54-7 Rd (Oryu-Dong), Gumdan-Ro Seo-Gu, Incheon Metropolitan City, Korea

2. Department of Mechanical Engineering, Incheon National University, Incheon 406-772, Korea

Abstract

R-404A, which had long been used as the refrigerant of a unitary ice maker, has to be replaced due to global warming. In the present study, drop-in tests were conducted for long-term alternative refrigerants R-455A and R-454C on the ice maker of 100[Formula: see text]kg/day capacity. Five samples were made having different combinations of refrigerant, condenser and compressor. Tests were conducted changing the outdoor and the supply water temperature. At the standard outdoor condition (21C, 65 RH and 10C water temperature), change of refrigerant from R-404A to R-455A for the same ice maker extended the ice ball formation time by 13% and reduced the amount of ice production per day by 6%. Larger vapor density and smaller temperature glide of R-404A may have resulted in a better performance. Furthermore, adoption of a larger (from 1/3 HP to 3/8 HP) compressor reduced the ice ball formation time by 12% and increased the amount of ice production per day by 8%. In addition, change of the fin-tube condenser to the microchannel condenser reduced the ice ball formation time by 9% and increased the amount of ice production per day by 4%. The refrigerant charge was also significantly reduced from 440[Formula: see text]g to 316[Formula: see text]g. Thermal performance of R-454C was poorer than that of R-455A. Replacement to R-454C increased the ice ball formation time by 14% and decreased the amount of ice production per day by 8%. The reason may be attributed to a larger pressure lift, which leads to smaller refrigerant mass flow rate. Ice production was possible even at the harsh environment (35C, 65 RH and 21C water temperature), although the production amount decreased.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of refrigeration system with minichannel condenser using R1234ze, R134a, R152a, R600a, R290 and mixture of R290/R600a (50/50);Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-08-10

2. Heat transfer coefficient, pressure drop and dry-out vapor quality of R454C. Flow boiling experiments and assessment of methods;International Journal of Heat and Mass Transfer;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3