Neural Network Model-Based Adaptive Control of a VAV-HVAC&R System

Author:

Ning M.1,Zaheeruddin M.1

Affiliation:

1. Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, Canada

Abstract

A dynamic system model of a two-zone variable air volume heating, ventilation and air conditioning and refrigeration (VAV-HVAC&R) system is considered. The system model consists of two environmental zones, an HVAC system and a water-cooled vapor compression chiller. Five adaptive controllers were designed to achieve good tracking control of set points of zone air temperatures, discharge air temperature, chilled water supply temperature and static pressure of the VAV-HVAC&R system. The PI controller gains were updated online using adaptive neural networks and an auto-tuning algorithm. Simulation results show that adaptive PI control gave faster response and less overshoot compared to conventional constant gain PI control. The control responses tracked set-points closely and remained stable over a typical day simulation of building operation under variable load conditions.

Funder

Canadian Network for Research and Innovation Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3