An Efficient HVAC Network Control for Safety Enhancement of a Typical Uninterrupted Power Supply Battery Storage Room

Author:

Lencwe Mpho J.ORCID,Chowdhury SP DanielORCID,Mahlangu Sipho,Sibanyoni Maxwell,Ngoma Louwrance

Abstract

Lead-acid batteries utilised in electrical substations release hydrogen and oxygen when these are charged. These gases could be dangerous and cause a risk of fire if they are not properly ventilated. Therefore, this research seeks to design and implement a network control panel for heating, ventilation, and air conditioning system (HVACS). This is achieved by using a specific range of controllers, which have more than thirty loops of proportional, integral, and derivative (PID) control to achieve a cost-effective design. It performs the required function of extracting hydrogen and oxygen, maintaining the desired temperature of the battery storage room within recommended limits (i.e., 25 ± 1 °C tolerance) without compromising quality, as set out in the user requirement specification. The system control panel allows the user to access control parameters such as changing temperature set-points, fan-speed, sensor database, etc. It does this automatically and allows no human interface after all necessary settings and installation are completed. The hardware is configured to detect extreme hydrogen and oxygen gas content in the battery room and to ensure that the HVACS extracts the gas content to the outside environment. The system’s results show that the network control panel operates effectively as per the recommended system requirements. Therefore, the effective operation of the HVACS ensures sufficient gas ventilation, thus mitigating the risk of fire in a typical battery storage room. Furthermore, this also enhances battery lifespan because of regulated operating temperature, which is conducive to minimise the effect of sulfation in lead–acid batteries (LAB). The extraction of toxic gases, regulation of temperature, ensuring suitable humidity in UPS battery room is important as it provides longer operational service of equipment, thus reducing frequent maintenance in these rooms. This benefits the electricity supply industry and helps in saving for unplanned maintenance costs.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3