Graph Convolutional Neural Network with Multi-Scale Attention Mechanism for EEG-Based Motion Imagery Classification

Author:

Zhu Jun1ORCID,Liu Qingshan1ORCID,Xu Chentao2ORCID

Affiliation:

1. School of Mathematics, Southeast University, Nanjing 210096, P. R. China

2. School of Cyber Science and Engineering, Southeast University, Nanjing 210096, P. R. China

Abstract

Recently, deep learning has been widely used in the classification of EEG signals and achieved satisfactory results. However, the correlation between EEG electrodes is rarely considered, which has been proved that there are indeed connections between different brain regions. After considering the connections between EEG electrodes, the graph convolutional neural network is applied to detect human motor intents from EEG signals, where EEG data are transformed into graph data through phase lag index, time-domain and frequency-domain features with different signal bands. Meanwhile, a multi-scale attention mechanism is proposed to the network to improve the accuracy of classification. By using the multi-scale attention-based graph convolutional neural network, the accuracy of 93.22% is achieved with 10-fold cross-validation, which is higher than the compared methods which ignore the spatial correlations of EEG signals.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Approach for Classification of Spices to Make Special Herbal Tea Using Caralluma Fimbriata;International Journal of Pattern Recognition and Artificial Intelligence;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3