EEG Resting-State Functional Networks in Amnestic Mild Cognitive Impairment

Author:

Caravaglios G.1ORCID,Muscoso E. G.1,Blandino V.2,Di Maria G.1,Gangitano M.2,Graziano F.1,Guajana F1,Piccoli T.2

Affiliation:

1. U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy

2. Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy

Abstract

Background. Alzheimer’s cognitive-behavioral syndrome is the result of impaired connectivity between nerve cells, due to misfolded proteins, which accumulate and disrupt specific brain networks. Electroencephalography, because of its excellent temporal resolution, is an optimal approach for assessing the communication between functionally related brain regions. O bjective. To detect and compare EEG resting-state networks (RSNs) in patients with amnesic mild cognitive impairment (aMCI), and healthy elderly (HE). Methods. We recruited 125 aMCI patients and 70 healthy elderly subjects. One hundred and twenty seconds of artifact-free EEG data were selected and compared between patients with aMCI and HE. We applied standard low-resolution brain electromagnetic tomography (sLORETA)-independent component analysis (ICA) to assess resting-state networks. Each network consisted of a set of images, one for each frequency (delta, theta, alpha1/2, beta1/2). Results. The functional ICA analysis revealed 17 networks common to groups. The statistical procedure demonstrated that aMCI used some networks differently than HE. The most relevant findings were as follows. Amnesic-MCI had: i) increased delta/beta activity in the superior frontal gyrus and decreased alpha1 activity in the paracentral lobule (ie, default mode network); ii) greater delta/theta/alpha/beta in the superior frontal gyrus (i.e, attention network); iii) lower alpha in the left superior parietal lobe, as well as a lower delta/theta and beta, respectively in post-central, and in superior frontal gyrus(ie, attention network). Conclusions. Our study confirms sLORETA-ICA method is effective in detecting functional resting-state networks, as well as between-groups connectivity differences. The findings provide support to the Alzheimer’s network disconnection hypothesis.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3