Optimized Parallel Implementation of Face Detection Based on Embedded Heterogeneous Many-Core Architecture

Author:

Gao Fang12,Huang Zhangqin12,Wang Shulong12,Ji Xinrong12

Affiliation:

1. Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing 100124, P. R. China

2. Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, P. R. China

Abstract

Computing performance is one of the key problems in embedded systems for high-resolution face detection applications. To improve the computing performance of embedded high-resolution face detection systems, a novel parallel implementation of embedded face detection system was established based on a low power CPU-Accelerator heterogeneous many-core architecture. First, a basic CPU version of face detection prototype was implemented based on the cascade classifier and Local Binary Patterns operator. Second, the prototype was extended to a specified embedded parallel computing platform that is called Parallella and consists of Xilinx Zynq and Adapteva Epiphany. Third, the face detection algorithm was optimized to adapt to the Parallella architecture to improve the detection speed and the utilization of computing resources. Finally, a face detection experiment was conducted to evaluate the computing performance of the proposal in this paper. The experimental results show that the proposed implementation obtained a very consistent accuracy as that of the dual-core ARM, and achieved 7.8 times speedup than that of the dual-core ARM. Experiment results prove that the proposed implementation has significant advantages on computing performance.

Funder

the Beijing Municipal Natural Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3