Hardware Response and Performance Analysis of Multicore Computing Systems for Deep Learning Algorithms

Author:

Kumar Lalit1,Singh Dushyant Kumar1

Affiliation:

1. CSED, MNNIT Allahabad , Prayagraj , India

Abstract

Abstract With the advancement in technological world, the technologies like Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are gaining more popularity in many applications of computer vision like object classification, object detection, Human detection, etc., ML and DL approaches are highly compute-intensive and require advanced computational resources for implementation. Multicore CPUs and GPUs with a large number of dedicated processor cores are typically the more prevailing and effective solutions for the high computational need. In this manuscript, we have come up with an analysis of how these multicore hardware technologies respond to DL algorithms. A Convolutional Neural Network (CNN) model have been trained for three different classification problems using three different datasets. All these experimentations have been performed on three different computational resources, i.e., Raspberry Pi, Nvidia Jetson Nano Board, & desktop computer. Results are derived for performance analysis in terms of classification accuracy and hardware response for each hardware configuration.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel aspect of automatic vlog content creation using generative modeling approaches;Digital Signal Processing;2024-05

2. Diversified realistic face image generation GAN for human subjects in multimedia content creation;Computer Animation and Virtual Worlds;2024-03

3. Review of an Evolved DNN Architecture EfficientNet for Yoga Pose Detection Problem;2023 IEEE 11th Region 10 Humanitarian Technology Conference (R10-HTC);2023-10-16

4. Comparative analysis of Vid2Vid and Fast Vid2Vid Models for Video-to-Video Synthesis on Cityscapes Dataset;2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3);2023-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3