Affiliation:
1. Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China
2. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
Abstract
A weighted densely connected convolution network (W-DenseNet) is proposed for reinforcement learning in this work. The W-DenseNet can maximize the information flow between all layers in the network by cross layer connection, which can reduce the phenomenon of gradient vanishing and degradation, and greatly improves the speed of training convergence. The weight coefficient introduced in W-DenseNet, the current layer received all the previous layers’ feature maps with different initial weights, which can extract feature information of different layers more effectively according to tasks. According to the weight adjusted by learning, the cross-layer connection is pruned to remove the cross-layer connection with smaller weight, so as to reduce the number of cross-layer. In this work, GridWorld and FlappyBird games are used for simulation. The simulation results of deep reinforcement learning based on W-DenseNet are compared with the traditional deep reinforcement learning algorithm and reinforcement learning algorithm based on DenseNet. The simulation results show that the proposed W-DenseNet method can make the results more convergent, reduce the training time, and obtain more stable results.
Funder
Major Research Plan
Basic Research Program of Jiangsu Province
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献