An LSTM with Differential Structure and Its Application in Action Recognition

Author:

Chen Weifeng12ORCID,Zheng Fei23ORCID,Gao Shanping1ORCID,Hu Kai2ORCID

Affiliation:

1. Quanzhou University of Information Engineering, Quanzhou, Fujian, China

2. School of Automation, Nanjing University of Information Science & Technology, Nanjing, China

3. China Telecom Ningbo Branch, Zhejiang, Ningbo, China

Abstract

Because of the broad application of human action recognition technology, action recognition has always been a hot spot in computer vision research. The Long Short-Term Memory (LSTM) network is a classic action recognition algorithm, and many effective hybrid algorithms have been proposed based on basic LSTM infrastructure. Although some progress has been made in accuracy, most of those hybrid algorithms have to have more and more complex structures and deeper network levels. After analyzing the structure of the classic LSTM from the perspective of control theory, we determined that the classic LSTM could strengthen the differential characteristics of human action recognition technology to reflect the change of speed. Thus, an improved LSTM structure with an input differential characteristic module is proposed. Furthermore, in this article, we considered the influence of first-order and second-order differential on the extraction of movement pose information, that is, the influence of movement speed and acceleration on action recognition. We designed four different LSTM units with first-order and second-order differential. Moreover, the experiments were performed for the four units on three common datasets repeatedly. We found that the LSTM network with the input differential feature module proposed in this article can effectively improve action recognition accuracy and stability without deepening the complexity of the network and can be used as a new basic LSTM network architecture.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3