Using Deep Neural Networks to Improve the Performance of Protein–Protein Interactions Prediction

Author:

Gui Yuan-Miao12ORCID,Wang Ru-Jing1,Wang Xue1,Wei Yuan-Yuan1

Affiliation:

1. Institute of Intelligent Machines, Hefei Institute of Physics, Chinese Academy of Sciences, Hefei City, Anhui Province, P. R. China

2. University of Science and Technology of China, Hefei City, Anhui Province, P. R. China

Abstract

Protein–protein interactions (PPIs) help to elucidate the molecular mechanisms of life activities and have a certain role in promoting disease treatment and new drug development. With the advent of the proteomics era, some PPIs prediction methods have emerged. However, the performances of these PPIs prediction methods still need to be optimized and improved. In order to optimize the performance of the PPIs prediction methods, we used the dropout method to reduce over-fitting by deep neural networks (DNNs), and combined with three types of feature extraction methods, conjoint triad (CT), auto covariance (AC) and local descriptor (LD), to build DNN models based on amino acid sequences. The results showed that the accuracy of the CT, AC and LD increased from 97.11% to 98.12%, 96.84% to 98.17%, and 95.30% to 95.60%, respectively. The loss values of the CT, AC and LD decreased from 27.47% to 14.96%, 65.91% to 17.82% and 36.23% to 15.34%, respectively. Experimental results show that dropout can optimize the performances of the DNN models. The results can provide a resource for scholars in future studies involving the prediction of PPIs. The experimental code is available at https://github.com/smalltalkman/hppi-tensorflow .

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3