An OSM Data-Driven Method for Road-Positive Sample Creation

Author:

Dai Jiguang,Li ChengchengORCID,Zuo Yuqiang,Ai Haibin

Abstract

Determining samples is considered to be a precondition in deep network training and learning, but at present, samples are usually created manually, which limits the application of deep networks. Therefore, this article proposes an OpenStreetMap (OSM) data-driven method for creating road-positive samples. First, based on the OSM data, a line segment orientation histogram (LSOH) model is constructed to determine the local road direction. Secondly, a road homogeneity constraint rule and road texture feature statistical model are constructed to extract the local road line, and on the basis of the local road lines with the same direction, a polar constraint rule is proposed to determine the local road line set. Then, an iterative interpolation algorithm is used to connect the local road lines on both sides of the gaps between the road lines. Finally, a local texture self-similarity (LTSS) model is implemented to determine the road width, and the centerpoint autocorrection model and random sample consensus (RANSAC) algorithm are used to extract the road centerline; the road width and road centerline are used to complete the creation of the road-positive samples. Experiments are conducted on different scenes and different types of images to demonstrate the proposed method and compare it with other approaches. The results demonstrate that the proposed method for creating road-positive samples has great advantages in terms of accuracy and integrity.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference48 articles.

1. Automatic road extraction from remote sensing imagery incorporating prior information and colour segmentation;Ziemsa;Remote Sens. Spat. Inf. Sci.,2007

2. A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas

3. Model-based road extraction from images;Steger,1995

4. Semantic objects and context for finding roads;Baumgartner;Proc. SPIE Int. Soc. Opt. Eng.,1997

5. Automatic Road Detection in Grayscale Aerial Images

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UnetEdge: A transfer learning-based framework for road feature segmentation from high-resolution remote sensing images;Remote Sensing Applications: Society and Environment;2024-04

2. Road extraction in remote sensing data: A survey;International Journal of Applied Earth Observation and Geoinformation;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3