Affiliation:
1. Faculty of Engineering and Technology, Multimedia University, Ayer Keroh, Melaka 75450, Malaysia
Abstract
A tremendous increase in the video content uploaded on the internet has made it necessary for auto-recognition of videos in order to analyze, moderate or categorize certain content that can be accessed easily later on. Video analysis requires the study of proficient methodologies at the semantic level in order to address the issues such as occlusions, changes in illumination, noise, etc. This paper is aimed at the analysis of the soccer videos and semantic processing as an application in the video semantic analysis field. This study proposes a framework for automatically generating and annotating the highlights from a soccer video. The proposed framework identifies the interesting clips containing possible scenes of interest, such as goals, penalty kicks, etc. by parsing and processing the audio/video components. The framework analyzes, separates and annotates the individual scenes inside the video clips and saves using kernel support vector machine. The results show that semantic analysis of videos using kernel support vector machines is a reliable method to separate and annotate events of interest in a soccer game.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献