Football Game Video Analysis Method with Deep Learning

Author:

Liu Nian1ORCID,Liu Lu2,Sun Zengjun2ORCID

Affiliation:

1. Department of Sports, Zhejiang Gongshang University, Hangzhou 310000, Zhejiang, China

2. Business & Public Administration, Namseoul University, Cheonan 31020, Republic of Korea

Abstract

Football is a beloved sport, and its wide audience makes football video one of the most analytically valuable types of video. Researchers have achieved certain research results in football video content analysis. How to locate interesting event clips from a complete long video is an urgent issue to be addressed in football game video analysis. The granularity of sports event detection results with traditional machine learning is relatively coarse, and the types of events that can be detected are limited. In recent years, deep learning has made good progress in the research of video single-person events and action detection, but there are few achievements in the detection of sports video events. In response to this problem, this work uses a deep learning method to build an event detection model to detect events contained in football videos. The whole model is divided into two stages, in which the first stage is utilized to generate candidate event fragments. It divides the football video to be detected into a sequence of frames of a certain length and scans using a sliding window. Multiple frame sequences within a sliding window form a segment, and each segment is a prediction unit. The frame sequence features within the segment are obtained through a three-dimensional convolutional neural network, which is used as the input of each time point of the bidirectional recurrent neural network and further integrated to generate the event prediction of the segment. The second stage is to further process the above results to remove all segments predicted as nonevents. The thresholds are set according to the detection effect of various events to filter out event fragments with higher probability values, obtain the start and end positions of the events through merging, classify and mark them, and finally output complete event fragments. This work has carried out comprehensive and systematic experiments to verify correctness of the proposed method.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence applications in the football codes: A systematic review;Journal of Sports Sciences;2024-07-02

2. An intelligent surgical video retrieval for computer vision enhancement in medical diagnosis using deep learning techniques;Multimedia Tools and Applications;2024-05-29

3. Perspective Transform Based YOLO With Weighted Intersect Fusion for Forecasting the Possession Sequence of the Live Football Game;IEEE Access;2024

4. Video Content Analysis Using Deep Learning Models;2023 3rd International Conference on Advancement in Electronics & Communication Engineering (AECE);2023-11-23

5. Accessory Based Classification of Football Players Using Attention UNet;2023 3rd International Conference on Advancement in Electronics & Communication Engineering (AECE);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3