Development of Deep Learning Framework for Mathematical Morphology

Author:

Shih Frank Y.12ORCID,Shen Yucong1,Zhong Xin1

Affiliation:

1. Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA

2. Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan

Abstract

Mathematical morphology has been applied as a collection of nonlinear operations related to object features in images. In this paper, we present morphological layers in deep learning framework, namely MorphNet, to perform atomic morphological operations, such as dilation and erosion. For propagation of losses through the proposed deep learning framework, we approximate the dilation and erosion operations by differential and smooth multivariable functions of the softmax function, and therefore enable the neural network to be optimized. The proposed operations are analyzed by the derivative of approximation functions in the deep learning framework. Experimental results show that the output structuring element of a morphological neuron and the target structuring element are matched to confirm the efficiency and correctness of the proposed framework.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Morphological Neural Networks;International Journal of Pattern Recognition and Artificial Intelligence;2022-08-26

2. Learning Grayscale Mathematical Morphology with Smooth Morphological Layers;Journal of Mathematical Imaging and Vision;2022-05-14

3. Classification of Chest X-Ray Images Using Novel Adaptive Morphological Neural Networks;International Journal of Pattern Recognition and Artificial Intelligence;2021-05-14

4. Going Beyond p-convolutions to Learn Grayscale Morphological Operators;Lecture Notes in Computer Science;2021

5. On Some Associations Between Mathematical Morphology and Artificial Intelligence;Lecture Notes in Computer Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3