Deep Morphological Neural Networks

Author:

Shen Yucong1,Shih Frank Y.12ORCID,Zhong Xin3,Chang I-Cheng4

Affiliation:

1. Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA

2. Department of Computer Science and Information Engineering, Asia University, Taichung 413, Taiwan

3. Department of Computer Science, University of Nebraska, Omaha, NE 68182, USA

4. Department of Computer Science and Information Engineering, National Dong Hwa University, Hualien 974, Taiwan

Abstract

Mathematical morphology intends to extract object features such as geometric and topological structures in digital images. Given a set of target images and original images, it is cumbersome and time-consuming to determine the suitable morphological operations and structuring elements. In this paper, we propose deep morphological neural networks, which include a nonlinear feature extraction layer to learn the structuring element correctly and an adaptive layer to select appropriate morphological operations automatically. We demonstrate the applications of object recognition, including hand-written digits, geometric shapes, traffic signs, and brain tumor. Experimental results show the higher computational efficiency and higher accuracy of our developed model as compared against existing convolutional neural network models.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Deep Hybrid Neural Network and an Application on Polyp Detection;International Journal of Pattern Recognition and Artificial Intelligence;2024-03-30

2. HaarNet: Large-Scale Linear-Morphological Hybrid Network for RGB-D Semantic Segmentation;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3