Random Subclasses Ensembles by Using 1-Nearest Neighbor Framework

Author:

Ahmad Amir1,Abujabal Hamza2,Aswani Kumar C.3

Affiliation:

1. College of Information Technology, United Arab Emirates University, Al Ain, UAE

2. Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Saudi Arabia

3. School of Information Technology and Engineering, VIT University, Vellore 632014, Tamilnadu, India

Abstract

A classifier ensemble is a combination of diverse and accurate classifiers. Generally, a classifier ensemble performs better than any single classifier in the ensemble. Naive Bayes classifiers are simple but popular classifiers for many applications. As it is difficult to create diverse naive Bayes classifiers, naive Bayes ensembles are not very successful. In this paper, we propose Random Subclasses (RS) ensembles for Naive Bayes classifiers. In the proposed method, new subclasses for each class are created by using 1-Nearest Neighbor (1-NN) framework that uses randomly selected points from the training data. A classifier considers each subclass as a class of its own. As the method to create subclasses is random, diverse datasets are generated. Each classifier in an ensemble learns on one dataset from the pool of diverse datasets. Diverse training datasets ensure diverse classifiers in the ensemble. New subclasses create easy to learn decision boundaries that in turn create accurate naive Bayes classifiers. We developed two variants of RS, in the first variant RS(2), two subclasses per class were created whereas in the second variant RS(4), four subclasses per class were created. We studied the performance of these methods against other popular ensemble methods by using naive Bayes as the base classifier. RS(4) outperformed other popular ensemble methods. A detailed study was carried out to understand the behavior of RS ensembles.

Funder

Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3