Random Ordinality Ensembles: Ensemble methods for multi-valued categorical data
Author:
Publisher
Elsevier BV
Subject
Artificial Intelligence,Information Systems and Management,Computer Science Applications,Theoretical Computer Science,Control and Systems Engineering,Software
Reference48 articles.
1. A. Ahmad, G. Brown, Random ordinality ensembles a novel ensemble method for multi-valued categorical data, in: 8th International Workshop on Multiple Classifier Systems, MCS 2009, 2009, pp. 222–231.
2. A k-mean clustering algorithm for mixed numeric and categorical data;Ahmad;Data Knowl. Eng.,2007
3. A method to compute distance between two categorical values of same attribute in unsupervised learning for categorical data set;Ahmad;Patt. Recog. Lett.,2007
4. Combined 5×2 cv f test comparing supervised classification learning algorithms;Alpaydin;Neural Comput.,1999
5. S. Boriah, V. Chandola, V. Kumar, Similarity measures for categorical data: a comparative evaluation, in: Proceedings of the SIAM International Conference on Data Mining, SDM 2008, 2008, pp. 243–254.
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A new approach in model selection for ordinal target variables;Computational Statistics;2021-05-20
2. A ROI-guided deep architecture for robust facial expressions recognition;Information Sciences;2020-06
3. Perceptual multi-channel visual feature fusion for scene categorization;Information Sciences;2018-03
4. Aggregating predictions of multi-models for the small dataset learning tasks in the TFT-LCD process;The International Journal of Advanced Manufacturing Technology;2017-09-07
5. CNFL: Categorical to Numerical Feature Learning for Clustering and Classification;2017 IEEE Second International Conference on Data Science in Cyberspace (DSC);2017-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3