Affiliation:
1. Faculty of Computer Science, West Pomeranian University of Technology, Szczecin 71-210, Poland
Abstract
The crucial problem that has to be solved when designing an effective brain–computer interface (BCI) is: how to reduce the huge space of features extracted from raw electroencephalography (EEG) signals. One of the strategies for feature selection that is often applied by BCI researchers is based on genetic algorithms (GAs). The two types of GAs that are most commonly used in BCI research are the classic algorithm and the Culling algorithm. This paper presents both algorithms and their application for selecting features crucial for the correct classification of EEG signals recorded during imagery movements of the left and right hand. The results returned by both algorithms are compared to those returned by an algorithm with aggressive mutation and an algorithm with melting individuals, both of which have been proposed by the author of this paper. While the aggressive mutation algorithm has been published previously, the melting individuals algorithm is presented here for the first time.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献