Brain Tumor Segmentation Using 3D Generative Adversarial Networks

Author:

Li Yitong1ORCID,Chen Yue1,Shi Y.1

Affiliation:

1. Institute of Signal and Image Processing, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District Beijing, P. R. China

Abstract

Brain tumors have high morbidity and may lead to highly lethal cancer. In clinics, accurate segmentation of tumors is the means for diagnosis and determination of subsequent treatment options. Due to the irregularity and blurring of tumor boundaries, accurately segmenting the tumor lesions has received extensive attention in medical image analysis. In view of this situation, this paper proposed a brain tumor segmentation method based on generative adversarial networks (GANs). The GAN architecture consists of a densely connected three-dimensional (3D) U-Net used for segmentation and a classification network for discrimination, both of which use 3D convolutions to fuse multi-dimensional context information. The densely connected 3D U-Net model introduces a dense connection to accelerate network convergence, extracting more detailed information. The adversarial training makes the distribution of segmentation results closer to that of labeled data, which enables the network to segment some unexpected small tumor subregions. Alternately, train two networks and finally achieve a highly accurate classification of each voxel. The experiments conducted on BraTS2017 brain tumor MRI dataset show that the proposed method has higher accuracy in brain tumor segmentation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3