Towards on Develop a Framework for the Evaluation and Benchmarking of Skin Detectors Based on Artificial Intelligent Models Using Multi-Criteria Decision-Making Techniques

Author:

Yas Qahtan M.1,Zadain A. A.1,Zaidan B. B.1,Lakulu M. B.1,Rahmatullah Bahbibi1

Affiliation:

1. Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia

Abstract

Evaluation and benchmarking of skin detectors are challenging tasks because of multiple evaluation attributes and conflicting criteria. Although several evaluating and benchmarking techniques have been proposed, these approaches have many limitations. Fixing several attributes based on multi-attribute benchmarking approaches is particularly limited to reliable skin detection. Thus, this study aims to develop a new framework for evaluating and benchmarking skin detection on the basis of artificial intelligent models using multi-criteria analysis. For this purpose, two experiments are conducted. The first experiment consists of two stages: (1) discussing the development of a skin detector using multi-agent learning based on different color spaces to create a dataset of various color space samples for benchmarking and (2) discussing the evaluation and testing the developed skin detector according to multi-evaluation criteria (i.e. reliability, time complexity, and error rate within dataset) to create a decision matrix. The second experiment applies different decision-making techniques (AHP/SAW, AHP/MEW, AHP/HAW, AHP/TOPSIS, AHP/WSM, and AHP/WPM) to benchmark the results of the first experiment (i.e. the developed skin detector). Then, we discuss the use of the mean, standard deviation, and paired sample [Formula: see text]-test to measure the correlations among the different techniques based on ranking results.

Funder

GPU

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3