An intelligent protection framework for intrusion detection in cloud environment based on covariance matrix self-adaptation evolution strategy and multi-criteria decision-making

Author:

Belal Mohamad Mulham1,Sundaram Divya Meena1

Affiliation:

1. School of Computer Science and Engineering, VIT-AP University, Amaravati, India

Abstract

The security defenses that are not comparable to sophisticated adversary tools, let the cloud as an open environment for attacks and intrusions. In this paper, an intelligent protection framework for intrusion detection in a cloud computing environment based on a covariance matrix self-adaptation evolution strategy (CMSA-ES) and multi-criteria decision-making (MCDM) is proposed. The proposed framework constructs an optimal intrusion detector by using CMSA-ES algorithm which adjusts the best parameter set for the attack detector. Moreover, the proposed framework uses a MEREC-VIKOR, a hybrid standardized evaluation technique. MEREC-VIKOR generates the own performance metrics (S, R, and Q) of the proposed framework which is a combination of multi-conflicting criteria. The proposed framework is evaluated for attack detection by using CICIDS 2017 dataset. The experiments show that the proposed framework can detect cloud attacks accurately with low S (utility), R (regret), and Q (integration between S and R). The proposed framework is analyzed with respect to several evolutionary algorithms such as GA, IGASAA, and CMA-ES. The performance analysis demonstrates that the proposed framework that depends on CMSA-ES converges faster than the other evolutionary algorithms such as GA, IGASAA, and CMA-ES. The outcomes also demonstrate that the proposed model is comparable to the state-of-the-art techniques.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference40 articles.

1. Cloud computing and securityissues—a review of amazon web services;Alqahtani;International Journal of Applied Engineering Research,2018

2. Predicting Malicious Insider Threat Scenarios Using Organizational Data and a Heterogeneous Stack-Classifier

3. TriskeleLabs, Cloud cyber attacks: The latest cloud computing security issues @ONLINE (2022). URL short-url.at/HLT46 .

4. Intelligentapproach to build a deep neural network based ids for cloudenvironment using combination of machine learning algorithms;Chiba;Computers & Security,2019

5. A survey of security issues for cloud computing;Khan;Journal of Network and Computer Applications,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3