Dynamic Coal Quantity Detection and Classification of Permanent Magnet Direct Drive Belt Conveyor Based on Machine Vision and Deep Learning

Author:

Wang Guimei1ORCID,Li Xuehui1,Yang Lijie1

Affiliation:

1. School of Mechanical and Equipment Engineering, Hebei University of Engineering, 19 Taiji Road, Congtai District, HanDan 056038, P. R. China

Abstract

Real-time and accurate measurement of coal quantity is the key to energy-saving and speed regulation of belt conveyor. The electronic belt scale and the nuclear scale are the commonly used methods for detecting coal quantity. However, the electronic belt scale uses contact measurement with low measurement accuracy and a large error range. Although nuclear detection methods have high accuracy, they have huge potential safety hazards due to radiation. Due to the above reasons, this paper presents a method of coal quantity detection and classification based on machine vision and deep learning. This method uses an industrial camera to collect the dynamic coal quantity images of the conveyor belt irradiated by the laser transmitter. After preprocessing, skeleton extraction, laser line thinning, disconnection connection, image fusion, and filling, the collected images are processed to obtain coal flow cross-sectional images. According to the cross-sectional area and the belt speed of the belt conveyor, the coal volume per unit time is obtained, and the dynamic coal quantity detection is realized. On this basis, in order to realize the dynamic classification of coal quantity, the coal flow cross-section images corresponding to different coal quantities are divided into coal type images to establish the coal quantity data set. Then, a Dense-VGG network for dynamic coal classification is established by the VGG16 network. After the network training is completed, the dynamic classification performance of the method is verified through the experimental platform. The experimental results show that the classification accuracy reaches 94.34%, and the processing time of a single frame image is 0.270[Formula: see text]s.

Funder

Nature Science Foundation of Hebei Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3