Affiliation:
1. Harbin Normal University, Harbin 150000, P. R. China
Abstract
Because the shallow neural network has limited ability to represent complex functions with limited samples and calculation units, its generalization ability will be limited when it comes to complex classification problems. The essence of deep learning is to learn a nonlinear network structure, to represent input data distributed representation and demonstrate a powerful ability to learn deeper features of data from a small set of samples. In order to realize the accurate classification of expression images under normal conditions, this paper proposes an expression recognition model of improved Visual Geometry Group (VGG) deep convolutional neural network (CNN). Based on the VGG-19, the model optimizes network structure and network parameters. Most expression databases are unable to train the entire network from the start due to lack of sufficient data. This paper uses migration learning techniques to overcome the shortage of image training samples. Shallow CNN, Alex-Net and improved VGG-19 deep CNN are used to train and analyze the facial expression data on the Extended Cohn–Kanade expression database, and compare the experimental results obtained. The experimental results indicate that the improved VGG-19 network model can achieve 96% accuracy in facial expression recognition, which is obviously superior to the results of other network models.
Funder
Harbin normal university graduate innovative research projects
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献