Affiliation:
1. Computer Science and Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur, India
Abstract
An illumination and expression invariant face recognition method based on uniform local binary patterns (uLBP) and Legendre moments is proposed in this work. The proposed method exploits uLBP texture features and Legendre moments to make a feature representation with enhanced discriminating power. The input images are preprocessed to extract the face region and normalized. From normalized image, uLBP codes are extracted to obtain texture image which overcomes the effect of monotonic temperature changes. Legendre moments are computed from this texture image to get the required feature vector. Legendre moments conserve the spatial structure information of the texture image. The resultant feature vector is classified using k-nearest neighbor classifier with [Formula: see text] norm. To evaluate the proposed method, experiments are performed on IRIS and NVIE databases. The proposed method is tested on both visible and infrared images under different illumination and expression variations and performance is compared with recently published methods in terms of recognition rate, recall, length of feature vector, and computational time. The proposed method gives better recognition rates and outperforms other recent face recognition methods.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献