Affiliation:
1. Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
Abstract
Thermal infrared (IR) images focus on changes of temperature distribution on facial muscles and blood vessels. These temperature changes can be regarded as texture features of images. A comparative study of face two recognition methods working in thermal spectrum is carried out in this paper. In the first approach, the training images and the test images are processed with Haar wavelet transform and the LL band and the average of LH/HL/HH bands subimages are created for each face image. Then a total confidence matrix is formed for each face image by taking a weighted sum of the corresponding pixel values of the LL band and average band. For LBP feature extraction, each of the face images in training and test datasets is divided into 161 numbers of subimages, each of size 8 × 8 pixels. For each such subimages, LBP features are extracted which are concatenated in manner. PCA is performed separately on the individual feature set for dimensionality reduction. Finally, two different classifiers namely multilayer feed forward neural network and minimum distance classifier are used to classify face images. The experiments have been performed on the database created at our own laboratory and Terravic Facial IR Database.
Funder
University Grants Commission
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献