Research and Improvement of Content-Based Image Retrieval Framework

Author:

Hou Yong1ORCID,Wang Qingjun23

Affiliation:

1. Department of Computer Engineering in Bengbu College, Bengbu 233030, P. R. China

2. Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China

3. Shenyang Aerospace University, Shenyang, P. R. China

Abstract

This paper proposed a high-performance image retrieval framework, which combines the improved feature extraction algorithm SIFT (Scale Invariant Feature Transform), improved feature matching, improved feature coding Fisher and improved Gaussian Mixture Model (GMM) for image retrieval. Aiming at the problem of slow convergence of traditional GMM algorithm, an improved GMM is proposed. This algorithm initializes the GMM by using on-line [Formula: see text]-means clustering method, which improves the convergence speed of the algorithm. At the same time, when the model is updated, the storage space is saved through the improvement of the criteria for matching rules and generating new Gaussian distributions. Aiming at the problem that the dimension of SIFT (Scale Invariant Feature Transform) algorithm is too high, the matching speed is too slow and the matching rate is low, an improved SIFT algorithm is proposed, which preserves the advantages of SIFT algorithm in fuzzy, compression, rotation and scaling invariance advantages, and improves the matching speed, the correct match rate is increased by an average of 40% to 55%. Experiments on a recently released VOC 2012 database and a database of 20 category objects containing 230,800 images showed that the framework had high precision and recall rates and less query time. Compared with the standard image retrieval framework, the improved image retrieval framework can detect the moving target quickly and effectively and has better robustness.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3