Multiple Classifiers-Based Feature Fusion for RGB-D Object Recognition

Author:

Wu Yan1,Li Jiqian1,Bai Jing1

Affiliation:

1. College of Electronics & Information Engineering, Tongji University, Shanghai, 201804, P. R. China

Abstract

RGB-D-based object recognition has been enthusiastically investigated in the past few years. RGB and depth images provide useful and complementary information. Fusing RGB and depth features can significantly increase the accuracy of object recognition. However, previous works just simply take the depth image as the fourth channel of the RGB image and concatenate the RGB and depth features, ignoring the different power of RGB and depth information for different objects. In this paper, a new method which contains three different classifiers is proposed to fuse features extracted from RGB image and depth image for RGB-D-based object recognition. Firstly, a RGB classifier and a depth classifier are trained by cross-validation to get the accuracy difference between RGB and depth features for each object. Then a variant RGB-D classifier is trained with different initialization parameters for each class according to the accuracy difference. The variant RGB-D-classifier can result in a more robust classification performance. The proposed method is evaluated on two benchmark RGB-D datasets. Compared with previous methods, ours achieves comparable performance with the state-of-the-art method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Reinforcement Learning-Based Robotic Grasping in Clutter and Occlusion;Sustainability;2021-12-10

2. Features Combined Binary Descriptor Based on Voted Ring-Sampling Pattern;IEEE Transactions on Circuits and Systems for Video Technology;2020-10

3. Breaking process of boiling film around a solid hot sphere immersed in forced convection of sub-cooled water;International Journal of Heat and Mass Transfer;2020-09

4. Feature Matching Based on Triangle Guidance and Constraints;International Journal of Pattern Recognition and Artificial Intelligence;2018-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3