Affiliation:
1. School of Computer Science and Technique, Henan Polytechnic University, Jiaozuo 454000, P. R. China
2. School of Information Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
Abstract
For images with distortions or repetitive patterns, the existing matching methods usually work well just on one of the two kinds of images. In this paper, we present novel triangle guidance and constraints (TGC)-based feature matching method, which can achieve good results on both kinds of images. We first extract stable matched feature points and combine these points into triangles as the initial matched triangles, and triangles combined by feature points are as the candidates to be matched. Then, triangle guidance based on the connection relationship via the shared feature point between the matched triangles and the candidates is defined to find the potential matching triangles. Triangle constraints, specially the location of a vertex relative to the inscribed circle center of the triangle, the scale represented by the ratio of corresponding side lengths of two matching triangles and the included angles between the sides of two triangles with connection relationship, are subsequently used to verify the potential matches and obtain the correct ones. Comparative experiments show that the proposed TGC can increase the number of the matched points with high accuracy under various image transformations, especially more effective on images with distortions or repetitive patterns due to the fact that the triangular structure are not only stable to image transformations but also provides more geometric constraints.
Funder
National Natural Science Foundation of China
Henan Polytechnic University Innovative Research Team
Henan Polytechnic University Distinguished Young Scholars
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献