Affiliation:
1. School of Computing Science, Curtin University of Technology, Perth, WA 6001, Australia
Abstract
In this paper, we consider the problem of tracking an object and predicting the object's future trajectory in a wide-area environment, with complex spatial layout and the use of multiple sensors/cameras. To solve this problem, there is a need for representing the dynamic and noisy data in the tracking tasks, and dealing with them at different levels of detail. We employ the Abstract Hidden Markov Models (AHMM), an extension of the well-known Hidden Markov Model (HMM) and a special type of Dynamic Probabilistic Network (DPN), as our underlying representation framework. The AHMM allows us to explicitly encode the hierarchy of connected spatial locations, making it scalable to the size of the environment being modeled. We describe an application for tracking human movement in an office-like spatial layout where the AHMM is used to track and predict the evolution of object trajectories at different levels of detail.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献