Abstract
AbstractHidden Markov models (HMMs), especially those with a Poisson density governing the latent state-dependent emission probabilities, have enjoyed substantial and undeniable success in modeling natural hazards. Classifications among these hazards, induced through quantifiable properties such as varying intensities or geographic proximities, often exist, enabling the creation of an empirical recurrence rates ratio (ERRR), a smoothing statistic that is gradually gaining currency in modeling literature due to its demonstrated ability in unearthing interactions. Embracing these tools, this study puts forth a refreshing monitoring alternative where the unobserved state transition probability matrix in the likelihood of the Poisson based HMM is replaced by the observed transition probabilities of a discretized ERRR. Analyzing examples from Hawaiian volcanic and West Atlantic hurricane interactions, this work illustrates how the discretized ERRR may be interpreted as an observed version of the unobserved hidden Markov chain that generates one of the two interacting processes. Surveying different facets of traditional inference such as global state decoding, hidden state predictions, one-out conditional distributions, and implementing related computational algorithms, we find that the latest proposal estimates the chances of observing a high-risk period, one threatening several hazards, more accurately than its established counterpart. Strongly intuitive and devoid of forbidding technicalities, the new prescription launches a vision of surer forecasts and stands versatile enough to be applicable to other types of hazard monitoring (such as landslides, earthquakes, floods), especially those with meager occurrence probabilities.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Ho, C.-H., Zhong, G., Cui, F. & Bhaduri, M. Modeling interaction between bank failure and size. J. Financ. Bank Manag. 4, 15–33 (2016).
2. Ho, C.-H. & Bhaduri, M. A quantitative insight into the dependence dynamics of the Kilauea and Mauna Loa Volcanoes Hawaii. Math. Geosci. 49, 893–911 (2017).
3. Bhaduri, M. & Ho, C.-H. On a temporal investigation of hurricane strength and frequency. Environ. Model. Assess. 24, 495–507 (2018).
4. Daley, D. J. Stochastically monotone Markov Chains. Z. Wahrsch. Verwandte Gebiete 10, 305–317 (1968).
5. Zhan, F. et al. Beyond cumulative sum charting in non-stationarity detection and estimation. IEEE Access 7, 140860–140874 (2019).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献