On modifications to the Poisson-triggered hidden Markov paradigm through partitioned empirical recurrence rates ratios and its applications to natural hazards monitoring

Author:

Bhaduri Moinak

Abstract

AbstractHidden Markov models (HMMs), especially those with a Poisson density governing the latent state-dependent emission probabilities, have enjoyed substantial and undeniable success in modeling natural hazards. Classifications among these hazards, induced through quantifiable properties such as varying intensities or geographic proximities, often exist, enabling the creation of an empirical recurrence rates ratio (ERRR), a smoothing statistic that is gradually gaining currency in modeling literature due to its demonstrated ability in unearthing interactions. Embracing these tools, this study puts forth a refreshing monitoring alternative where the unobserved state transition probability matrix in the likelihood of the Poisson based HMM is replaced by the observed transition probabilities of a discretized ERRR. Analyzing examples from Hawaiian volcanic and West Atlantic hurricane interactions, this work illustrates how the discretized ERRR may be interpreted as an observed version of the unobserved hidden Markov chain that generates one of the two interacting processes. Surveying different facets of traditional inference such as global state decoding, hidden state predictions, one-out conditional distributions, and implementing related computational algorithms, we find that the latest proposal estimates the chances of observing a high-risk period, one threatening several hazards, more accurately than its established counterpart. Strongly intuitive and devoid of forbidding technicalities, the new prescription launches a vision of surer forecasts and stands versatile enough to be applicable to other types of hazard monitoring (such as landslides, earthquakes, floods), especially those with meager occurrence probabilities.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3