ON DIFFERENT MODEL SELECTION CRITERIA IN A FORWARD AND BACKWARD REGRESSION HYBRID NETWORK

Author:

COHEN SHIMON1,INTRATOR NATHAN1

Affiliation:

1. School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

Abstract

An assessment of the performance of a hybrid network with different model selection criteria is considered. These criteria are used in an automatic model selection algorithm for constructing a hybrid network of radial and perceptron hidden units for regression. A forward step builds the full hybrid network; a model selection criterion is used for controlling the network-size and another criterion is used for choosing the appropriate hidden unit for different regions of input space. This is followed by a conservative pruning step using Likelihood Ratio Test, Bayesian or Minimum Description Length, which leads to robust estimators with low variance. The result is a small architecture that performs well on difficult, realistic, benchmark data-sets of high dimensionality and small training size. Best results are obtained by using the Bayesian approach for the model selection.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference44 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Individual Travel Mode with Evidential Neural Network Model;Transportation Research Record: Journal of the Transportation Research Board;2013-01

2. AN INCREMENTAL FRAMEWORK BASED ON CROSS-VALIDATION FOR ESTIMATING THE ARCHITECTURE OF A MULTILAYER PERCEPTRON;International Journal of Pattern Recognition and Artificial Intelligence;2009-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3