AN INCREMENTAL FRAMEWORK BASED ON CROSS-VALIDATION FOR ESTIMATING THE ARCHITECTURE OF A MULTILAYER PERCEPTRON

Author:

ARAN OYA1,YILDIZ OLCAY TANER1,ALPAYDIN ETHEM1

Affiliation:

1. Department of Computer Engineering, Boğaziçi University, TR-34342, Istanbul, Turkey

Abstract

We define the problem of optimizing the architecture of a multilayer perceptron (MLP) as a state space search and propose the MOST (Multiple Operators using Statistical Tests) framework that incrementally modifies the structure and checks for improvement using cross-validation. We consider five variants that implement forward/backward search, using single/multiple operators and searching depth-first/breadth-first. On 44 classification and 30 regression datasets, we exhaustively search for the optimal and evaluate the goodness based on: (1) Order, the accuracy with respect to the optimal and (2) Rank, the computational complexity. We check for the effect of two resampling methods (5 × 2, ten-fold cv), four statistical tests (5 × 2 cv t, ten-fold cv t, Wilcoxon, sign) and two corrections for multiple comparisons (Bonferroni, Holm). We also compare with Dynamic Node Creation (DNC) and Cascade Correlation (CC). Our results show that: (1) On most datasets, networks with few hidden units are optimal, (2) forward searching finds simpler architectures, (3) variants using single node additions (deletions) generally stop early and get stuck in simple (complex) networks, (4) choosing the best of multiple operators finds networks closer to the optimal, (5) MOST variants generally find simpler networks having lower or comparable error rates than DNC and CC.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bir Gizli Katmanlı Yapay Sinir Ağlarında Optimal Nöron Sayısının İncelenmesi;Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi;2022-11-25

2. A Content Analysis of the Research Approaches in Music Genre Recognition;2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA);2022-06-09

3. Continuously Constructive Deep Neural Networks;IEEE Transactions on Neural Networks and Learning Systems;2020-04

4. Convex Hulls and the size and the Size of the Hidden Layer in a MLP Based Classifier;IEEE Latin America Transactions;2019-06

5. Feedforward Neural Networks with a Hidden Layer Regularization Method;Symmetry;2018-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3