Affiliation:
1. Fangchenggang College, Guangxi University of Finance and Economics, Fangchenggang 538100, P. R. China
Abstract
How to solve constrained optimization problems constitutes an important part of the research on optimization problems. In this paper, a hybrid immune clonal particle swarm optimization multi-objective algorithm is proposed to solve constrained optimization problems. In the proposed algorithm, the population is first initialized with the theory of good point set. Then, differential evolution is adopted to improve the local optimal solution of each particle, with immune clonal strategy incorporated to improve each particle. As a final step, sub-swarm is used to enhance the position and velocity of individual particle. The new algorithm has been tested on 24 standard test functions and three engineering optimization problems, whose results show that the new algorithm has good performance in both robustness and convergence.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献